日志数据分析-日志数据的种类
大家好,今天小编关注到一个比较有意思的话题,就是关于日志数据分析的问题,于是小编就整理了4个相关介绍日志数据分析的解答,让我们一起...
扫一扫用手机浏览
1、星型模式是以事实表为中心,所有的维度表直接连接在事实表上,像星星一样。
2、结构简单:星型拓扑是最早的计算机网络拓扑结构之一,也是目前许多网络中常见的拓扑结构。它结构简单,易于理解和实现,使得网络的管理和维护相对容易。
3、星座模型是星型模型的拓展(可以看作是多个事实表版本的星型模型),它的一个特点是多张事实表共用模型中的维度表,适用于比星型模型和雪花模型更复杂的场合。
4、【答案】:星型结构有中心节点和分支节点构成,各个分支节点与中心节点间均具有点到点的物理连接,分支节点之间没有直接的物理通路。
5、故障诊断和隔离容易。中央节点对连接线路可以逐一隔离进行故障检测和定位,单个连接点的故障只影响一个设备,不会影响全网。方便服务。中央节点可以方便地对各个站点提供服务和网络重新配置。
数据库是面向事务的设计,数据仓库是面向主题设计的。数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。“与时间相关”:数据库保存信息的时候,并不强调一定有时间信息。
数据仓库:是数据库概念的升级。从逻辑上理解,数据库和数据仓库没有区别,都是通过数据库软件实现的存放数据的地方,只不过从数据量来说,数据仓库要比数据库更庞大得多。数据仓库主要用于数据挖掘和数据分析。
数据仓库:数据仓库系统的主要应用主要是OLAP(On-Line Analytical Processing),支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。基本每家电商公司都会经历,从只需要业务数据库到要数据仓库的阶段。
大数据工程师和大数据开发工程师两者之间没有区别。大数据工程师指的就是大数据开发工程师。大数据工程师(即大数据开发工程师)从事大数据***集、清洗、分析、治理、挖掘等技术研究,并加以利用、管理、维护和服务。
技术区别 大数据开发类的岗位对于code能力、工程能力有一定要求,这意味着需要有一定的编程能力,有一定的语言能力,然后就是解决问题的能力。
简单点来说,大数据开发就是做大量数据的分布式计算的。数据分析主要是做数据的收集、挖掘、清洗、分析,最后形成分析报告想学的话可以参考下科多大。
大数据开发:简单粗略来说就是用工具实现大数据分析后所需要得出的结果。简单理解,大数据开发就是制造软件的,只是与大数据相关而已,通常用到的就是与大数据相关的开发工具、环境等等。
1、大数据系统需要数据模型方法来帮助更好的组织和存储数据,以便在性能、成本、效率和质量之间取得最佳平衡。
2、阿里巴巴在08年就把大数据作为一项公司基本战略,要知道那个时候甚至还没几个人开始谈论“大数据”,可以说在大数据方面相比于国内其他互联网公司,阿里是走在前面的。
3、BAT三巨头开始挖掘大数据阿里巴巴CTO即阿里云负责人王坚博士说过一句话:云计算和大数据,你们都理解错了。
4、Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
5、大数据或称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。
1、数据仓库与数据库的主要区别在于:(1)数据库是面向事务的设计,数据仓库是面向主题设计的。(2)数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。(3)数据库设计是尽量避免冗余,数据仓库在设计是有意引入冗余。
2、数据仓库:是数据库概念的升级。从逻辑上理解,数据库和数据仓库没有区别,都是通过数据库软件实现的存放数据的地方,只不过从数据量来说,数据仓库要比数据库更庞大得多。数据仓库主要用于数据挖掘和数据分析。
3、其实从三个定义,我们好像区别不大。数据库指的是数据的***,数据仓库也是一个数据***,大数据也是一个处理和存储数据的地方。但是不同的是,在于应用场景,和构建的技术原理不一样。
4、数据仓库和数据库的主要区别:数据仓库是指从业务数据中创建信息数据库,并针对决策和分析进行优化。数据库是数据管理的有效技术,是由一批数据构成的有序***,这些数据被存放在结构化的数据表里。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。 转载请注明出处::http://www.lzkypy.com/28248.html