大数据分析方法-大数据分析方法有哪些

nihdff 2024-05-11 数据分析 101 views

扫一扫用手机浏览

文章目录 [+]

大家好,今天小编关注到一个比较有意思的话题,就是关于大数据分析方法的问题,于是小编就整理了1个相关介绍大数据分析方法的解答,让我们一起看看吧。

  1. 能简单通俗的解释一下什么是大数据吗?

能简单通俗的解释一下什么是大数据吗?

大数据,不仅仅是数据量大,同时在其他方面,也有一定的特点。

大数据分析方法-大数据分析方法有哪些

第一,大数据数据体量非常大,传统的单机存储系统,已经无法在存储这么大量的数据,此时需要用到分布式存储技术。

第二,大数据的数据种类非常多,数据的格式也会变得复杂,比如数据种类有***、文档、图片、消息记录等等。

第三,大数据中潜藏着非常重要的价值,通过数据分析技术,对商业决策做出智能化以及数据化的支持。

大数据最主要的功能,就是为公司上层提供商业化决策支持,让公司能够结合历史数据,往正确的方向发展。大数据技术主要分为两类:大数据计算和大数据存储。

大数据计算主要分为离线计算和实时计算,具体使用要看业务场景对于数据产出时延的要求

离线计算对于数据的产出会有一定的时延,具体时延可以是15分钟、小时或者天级别的。离线任务一般会对数据进行全局批计算,这一次运行完就运行完了,不会像实时计算那样,除非你自己停止实时任务,否则实时程序会一直运行。

实时计算数据是不断产生的,一般数据产出的延迟会很低,最多是秒级别的。比如我们的数据大屏、实时数据流的加工处理等,这些场景对于数据的产出的时延要求很低。

离线计算的话,一般对于数据的产出时延没有那么高的要求,只要数据最终产出即可,具体使用像现在很多公司离线业务报表。目前大多数公司离线计算引擎使用的是Hive或者Spark,实时计算引擎目前主要是Flink。

大数据存储需要数据分布式存储,单机不能够在存储这么多巨量数据

在传统的关系型数据库中,当一个表非常大时,会使用分库分表技术,将表分布式的存储在不同的机器上面。分库分表技术可以使用开源工具TDDL。

在非关系型NoSQL数据库中,一般最底层的文件存储系统可以选择HDFS。HDFS文件系统将文件按照块来进行存储,一个块的大小为128兆,同时每个块会存储三份,对数据进行容灾存储,即使其中一个块坏了,可以选择其他块进行数据恢复。

分布式数据库系统可以对数据表进行水平分割和垂直分割比如HBase数据库,水平分割使用的是Region,垂直分割则是使用的列族。

分布式数据存储技术,需要不同机器一起协同工作,每台机器存储整体数据的一个子集。在未来大数据时代,肯定都会使用分布式数据存储,分布式数据库,会成为大数据系统的标配。

我是Lake,专注大数据技术原理、人工智能、数据库技术、程序员经验分享,如果我的问答对你有帮助的话,希望你能点赞关注我,感谢。

我会持续大数据、数据库方面的内容,如果你有任何问题,也欢迎关注私信我,我会认真解答每一个问题。期待您的关注

“不接触互联网,以后寸步难行!”十年前,在这样的危言耸听下,大家扔掉砖块手机拿起手掌大的智能手机。

好不容易学会了玩微信刷朋友圈,现在中年危机和“大数据”都一起来了。

是不是不接触大数据,也要被时代淘汰?

而现实生活中处处看见大数据,你刷不刷小***?读不读每日新闻?看不看新剧?

细心的人就会发现,为什么软件这么了解我,知道我喜欢看婆媳******、知道我喜欢学最新广场舞、知道我喜欢哈哈搞笑段子?

手指不管怎么往下滑,都是我喜欢看的,每次像再刷五分钟就去睡觉,一刷就是两个小时。这样熟悉的场景是不是有感同身受?

这就是大数据整合优化。

用专业术语概括大数据就是:使用新的处理模式,对信息进行捕捉、管理和处理的数据***。

简单来说就是:你拿着没有喝完的奶茶,准备扔进垃圾桶。上海清洁工阿姨非常友好地问你,“你是什么垃圾?”,

这时候你就要:

第一,先倒了剩下的奶茶

第二,然后把珍珠倒到“湿垃圾”处

第三,把外包装扔到“干垃圾”处。

以上这个过程就是大数据处理,对海量的数字信息进行分类、整合、优化,来达到客户需求的目的。

大数据在***分配、信息配对非常有用,例如器官移植配对,就职简历投放等等。

像我们这样的普通人,我们享受的是大数据给我们带来的便捷,我们并不需要去过于专研它。

所以不用担心不接触大数据,就要被时代淘汰!就像我们都会用智能手机,要理解智能手机到底是怎么运作,里面的锂子电子排列顺序是什么,这个是完全不必要的。

这是一个非常好的问题,作为一名大数据从业者,我来回答一下。

在当前的大数据时代,不仅IT(互联网)行业的人需要了解大数据相关知识,传统行业的从业者和普通大学生也都应该了解一定的大数据知识,在产业互联网和新基建***的推动下,未来大数据技术将全面开始落地应用,大数据也将重塑整个产业结构。

了解大数据首先要从大数据的概念开始,不同于人工智能概念,大数据概念还是相对比较明确的,而且大数据的技术体系也已经趋于成熟了。解释大数据概念,可以从数据自身的特点入手,然后进一步从场景、应用和行业来逐渐展开。

大数据自身的特点往往集中在五个方面,分别是数据量、数据结构多样性、数据价值密度、数据增长速度和可信度,对于这五个维度的理解和认知,是了解大数据概念的关键。当然,随着大数据技术的发展和在行业领域的应用,关于数据自身的维度也有了一定程度的扩展,这些扩展本身也是对大数据概念的一种丰富和完善。

数据量大是大数据的一个重要特征,但是数据量本身是一个汇集的概念,并不是只有很大的数据才称为大数据,传统信息系统所产生的“小数据”也是大数据的一个重要组成部分,这一点一定要有清晰的认知。当前从大数据的数据来源来看,主要集中在三个渠道,包括互联网、物联网和传统信息系统,物联网数据当前占据的比例比较大,相信在5G时代,物联网将依然是大数据的主要数据来源。

数据结构多样性是大数据的另一个重要特点,不同于创新信息系统(ERP)当中的数据,大数据的数据类型是非常复杂的,既有结构化数据,也有非结构化数据和半结构化数据,这对于传统的数据处理技术提出了巨大的挑战,这也是推动大数据技术产生的一个重要原因。在工业互联网时代,大数据的数据结构多样性会进一步得到体现,这对于数据价值化过程也提出了新的挑战。

数据价值密度往往是衡量数据价值的重要基础,相对于传统的信息系统来说,大数据当中的数据价值密度是比较低的,这就需要有更快速和便捷的方式,来完成数据的价值化提取过程,而这也正是当前大数据平台所关注的核心能力之一。实际上,早期的Hadoop、Spark平台之所以能够脱颖而出,一个重要的原因就是其数据处理(排序)速度比较快。

数据增长速度快是大数据的另一个重要表现,通常传统信息系统的数据增量是可以预测的,或者说增长速度是可控的,但是在大数据时代,数据增长速度已经大大突破了传统数据处理所能承载的极限。数据增长是一个相对的概念,相对于消费互联网来说,产业互联网所带来的数据增量可能会更加客观,因此产业互联网时代会进一步打开大数据的价值空间。

最后,大数据还有一个特点就是数据本身的真实性,大数据时代所带来的一个重要副作用就是数据真***难辨,这也是当前大数据技术所要重点解决的问题之一。从当前大型互联网平台所***用的方法来看,通常是技术和管理相结合的方式,比如通过为用户认证就能够解决一部分数据的真实性(专业性)问题。

我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。

如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!

用最通俗的语言跟你解释一下。

举个例子,你想要买一双鞋,打开淘宝搜索了半天,感觉不太合适,然后又一想,晚点买也可以,于是退出了淘宝,打开了抖音,开始看某些土味***。

当你下一次打开淘宝的时候,淘宝一定会给你推荐各种新款式的鞋,并且会给你推送相关的活动。而你每次打开抖音,看到的大部分都是土味***。

其原因就是因为你在淘宝上用了大部分时间去搜索鞋子,淘宝通过测算觉得你对鞋子感兴趣,于是你每次进淘宝都会给你推荐鞋子。除非你下次用更多的时间去搜索另外一个东西。而抖音觉得你比较喜欢土味***,因此这种***便一直出现。

这就是我们所说的大数据,通过对你各种行为分析,为你推荐更符合你口味的东西。

会销售的售货员在卖东西的时候一定不会仅仅去说产品,他肯定会通过各种方法去了解你的信息,等到信息足够后再去为你推荐更加合适的产品,而此时你成交的概率非常大。

所以不妨回忆一下,买东西的时候有没有售货员跟你聊除产品以外的东西?比如家庭?

生活中的大数据有很多,打开歌曲APP,每日推荐就是大数据;打开今日头条,推荐你最感兴趣的内容也是大数据;打开***APP,推荐的***同样是你最爱看的,这也是大数据。

因此,只要能通过某种途径,了解到你的详细信息或者行为,根据这些信息或者行为进行推荐你所感兴趣的东西,就叫做大数据。

不知道你清楚了没有?

到此,以上就是小编对于大数据分析方法的问题就介绍到这了,希望介绍关于大数据分析方法的1点解答对大家有用。

[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。 转载请注明出处::http://www.lzkypy.com/34621.html

相关文章

审计大数据分析-审计大数据分析案例

大家好,今天小编关注到一个比较有意思的话题,就是关于审计大数据分析的问题,于是小编就整理了4个相关介绍审计大数据分析的解答,让我们...

数据分析 2024-12-22 阅读1 评论0

eviews数据分析-eviews数据分析步骤

大家好,今天小编关注到一个比较有意思的话题,就是关于eviews数据分析的问题,于是小编就整理了3个相关介绍eviews数据分析的...

数据分析 2024-12-22 阅读2 评论0