时间序列数据分析-时间序列数据分析步骤
大家好,今天小编关注到一个比较有意思的话题,就是关于时间序列数据分析的问题,于是小编就整理了4个相关介绍时间序列数据分析的解答,让...
扫一扫用手机浏览
大家好,今天小编关注到一个比较有意思的话题,就是关于r数据分析的问题,于是小编就整理了5个相关介绍r数据分析的解答,让我们一起看看吧。
rstudio中分析导入的数据方法:
1.
键盘输入 方法:step1> mydata <- data.frame() %创建一个名为mydata的空的数据框 step2> fix(mydata) %手动改变量名、数据类型及输入数据
2.
直接导入 步骤:File->Import Dataset->选择导数的数据格式,按照系统提示进行即可。
1. R语言上手比较容易,SAS语言较为晦涩 2. R针对行与行之间的运算比SAS容易 3. SAS比R要成熟,很多分析都可以直接用,而不用自己写函数 4. SAS处理大数据更有优势 你可以根据自己的情况选择
SAS和R是统计软件,更偏向于统计分析,MATLAB是数学软件,应用区域更广,但在统计方面没有那么专业。
R语言和SAS语言在统计方面的比较:
1.R语言上手比较容易,SAS语言较为晦涩
2.R针对行与行之间的运算比SAS容易
3.SAS比R要成熟,很多分析都可以直接用,而不用自己写函数
4.SAS处理大数据更有优势
你可以根据自己的情况选择
相关系数是最早由统计学家卡尔·皮尔逊设计的统计指标,是研究变量之间线性相关程度的量,一般用字母 r 表示。由于研究对象的不同,相关系数有多种定义方式,较为常用的是皮尔逊相关系数。
相关系数r的绝对值一般在0.8以上,认为A和B有强的相关性。0.3到0.8之间,可以认为有弱的相关性。0.3以下,认为没有相关性。
谢谢邀请,R语言可以说是专用语言,应用领域只是数据分析,而Python是一种通用编程语言,相比来说Python的应用更为广泛,如果你的工作局限于统计分析的话可以选择R语言,如果未来可能往AI、数据科学等其他方向发展的话建议还是学习Python!
1.Python应用方向很广泛
不过Python仅仅是编程语言,你应该首先还要选择一个发展方向,学习特定方向的Python模块,比如数据分析与挖掘、爬虫工程师、Web开发、自动化运维、自动化测试,甚至人工智能。Web开发小型是PHP居多,中大型Web应用J***a独霸天下Python很难抗衡。自动化测试与运维已经脱离了软件开发主方向,工资与发展的话相比来说没有开发与数据分析好。总体来讲用Python做数据分析甚至人工智能是最好得方向,不过人工智能难度要高,对学历与学校也有要求,建议从数据分析入行,未来向大数据甚至人工智能方向发展是不错的选择,这也是Python语言最有优势的领域。
2.要有数学与统计基础,尤其是统计
不过不是科班出身,走人工智能方向要费劲得多,数学与统计要好,计算机相关专业的话应该也学过高数、线性代数、概率统计吧,就看学的怎么样了!
3.IT技术发展到现在,编程语言Python是较好的选择。
4.Python在数据科学领域是霸主
数据岗位发展方向,都是比较新型的职位,数据分析员、数据分析师、数据产品经理、数据总监、首席数据官等等,从数据分析员、初级数据分析师(就是表哥表姐哦)入行,逐步发展!
我们选择发展方向要顺势而为,目前人工智能、大数据、数据分析与挖掘无疑是发展方向,选准了深耕下去就行了,不管怎么样Python是非常值得投资的方向,希望能够坚定你的信心,需要更多相关***可以关注头条号“语凡提”,里面有大量我上课录制的相关***,涵盖Python/机器学习入门/深度学习入门/PySpark大数据开发/人脸识别项目实战等等。
到此,以上就是小编对于r数据分析的问题就介绍到这了,希望介绍关于r数据分析的5点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。 转载请注明出处::http://www.lzkypy.com/36300.html