数据分析要做什么-数据分析要做什么工作内容
大家好,今天小编关注到一个比较有意思的话题,就是关于数据分析要做什么的问题,于是小编就整理了4个相关介绍数据分析要做什么的解答,让...
扫一扫用手机浏览
大家好,今天小编关注到一个比较有意思的话题,就是关于大数据分析市场的问题,于是小编就整理了4个相关介绍大数据分析市场的解答,让我们一起看看吧。
大数据分析是指计算机根据已有的数据进行分析得出某个结论。
大数据分析的优点可以节省大量的人力物力,形成个性化的推荐。
大数据分析的缺点有存在信息质量参差不齐和隐私问题。。
统计与大数据分析是数据分析工作。大数据,或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。有人说大数据区别于统计的地方在于,统计只重数据***集,而大数据更重数据分析。
大数据分析的六个基本方面
1. Analytic Visualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
2. Data Mining Algorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
3. Predictive Analytic Capabilities(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
4. Semantic Engines(语义引擎)
我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
5.Data Quality and Master Data Management(数据质量和数据管理)
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。
***如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据能给我们带来的好处,而不仅仅是挑战。
6.数据存储,数据仓库
数据仓库是为了便于多维分析和多角度展示数据按特定模式进行存储所建立起来的关系型数据库。在商业智能系统的设计中,数据仓库的构建是关键,是商业智能系统的基础,承担对业务系统数据整合的任务,为商业智能系统提供数据抽取、转换和加载(ETL),并按主题对数据进行查询和访问,为联机数据分析和数据挖掘提供数据平台。
基本分析
大数据总归到底是一种分析工具,并不能确保100%有用,但是却能反映出一种网络社会关注的热点,把握住了热点成功的概率相对大一些。
卖点1——卖数据
比如你是商家要做广告,但是在那个平台做广告好呢?是百度还是其他公司的网站呢?那个网站性价比比较高呢?这个可以通过大数据决解。再比如你是商家,可以通过大数据知道现在消费者最关心商品和最关心的服务和要求。
卖点2——卖数据分析
通过数据处理分析后得出的趋势分析,比如搜索股票数据的人越来越多是不是证明市场越来越火爆,进入牛市概率大,反之则可能是熊市。
卖点3——某个行业数据分析
比如上面说的股市,还可以通过每个行业的股票代码名称进行趋势分析,越多人搜索的行业当然是热点,可以做成一套数据分析软件动态更新收费。
卖点4——客户要求定制的数据
可以按照客户的要求,卖一些客户需求的数据或者经过加工的大数据处理软件。
最后总结
因此总的来说大数据主要有3个卖点:一是卖数据;二是卖数据分析;三是卖客户定制数据。
到此,以上就是小编对于大数据分析市场的问题就介绍到这了,希望介绍关于大数据分析市场的4点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。 转载请注明出处::http://www.lzkypy.com/42607.html