时间序列数据分析-时间序列数据分析步骤
大家好,今天小编关注到一个比较有意思的话题,就是关于时间序列数据分析的问题,于是小编就整理了4个相关介绍时间序列数据分析的解答,让...
扫一扫用手机浏览
大家好,今天小编关注到一个比较有意思的话题,就是关于数据分析术语的问题,于是小编就整理了3个相关介绍数据分析术语的解答,让我们一起看看吧。
数据处理成语是指在计算机科学和数据分析领域中常用的一些术语或技术,用于描述对数据进行处理、转换和分析的方法和工具。这些成语包括数据清洗、数据转换、数据聚合、数据挖掘、数据可视化等。数据处理成语的目的是帮助人们更好地理解和处理大量的数据,从中提取有用的信息和洞察,并支持决策和解决问题。通过使用数据处理成语,人们可以更高效地处理和分析数据,发现数据中的模式和趋势,从而做出更准确的预测和决策。
MAT 和 MTH 都是缩写的专业术语。 ~MAT 是 Mechanical Aptitude Test (对机械的适应性试验) 的缩写, ~MTH 是Magnetic Tape Handle (磁带信息处理) 的缩写。
大数据(英语:Big data),又称为巨量资料,指的是在传统数据处理应用软件不足以处理的大或复杂的数据集的术语。
数据也可以定义为来自各种来源的大量非结构化或结构化数据。从学术角度而言,大数据的出现促成广泛主题的新颖研究。这也导致各种大数据统计方法的发展。大数据并没有统计学的抽样方法;它只是观察和追踪发生的事情。因此,大数据通常包含的数据大小超出传统软件在可接受的时间内处理的能力。由于近期的技术进步,发布新数据的便捷性以及全球大多数***对高透明度的要求,大数据分析在现代研究中越来越突出。
大数据(big data),IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据***,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据***,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须***用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
到此,以上就是小编对于数据分析术语的问题就介绍到这了,希望介绍关于数据分析术语的3点解答对大家有用。
[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。 转载请注明出处::http://www.lzkypy.com/43166.html